Особливості конструювання одягу на фігури із надлишковим жировідкладенням на окремих ділянках тіла
Учебные материалы


Особливості конструювання одягу на фігури із надлишковим жировідкладенням на окремих ділянках тіла



Карта сайта pkeeper7.ru

Таким образом, обратный ток io6p представляет собой ток проводимости, вызванный перемещением неосновных носителей. Обратный ток получается очень небольшим, так как неосновных носителей мало и, кроме того, сопротивление запирающего слоя при обратном напряжении очень велико. Действительно, при повышении обратного на­пряжения поле в месте перехода становится сильнее и под действием этого поля больше основных носителей «выталкивается» из пограничных слоев в глубь п- и р-областей. Поэтому с увеличением обратного напряжения уве­личивается не только высота потенциального барьера, но и толщина запирающего слоя (do6p > d). Этот слой еще сильнее обедняется носителями, и его сопротивление значительно возрастает, т. е.

Уже при сравнительно небольшом обратном напряжении обратный ток становится практически постоянным. Это объясняется тем, что число неосновных носителей ограничено. С повышением температуры концентрация их возрастает, и обратный ток увеличивается, а обратное сопротивление уменьшается.

2.4. ПЕРЕХОД МЕТАЛЛ – ПОЛУПРОВОДНИК

В

современных полупроводниковых приборах помимо контактов с элек
ронно-дырочным переходом применяются также контакты между металлом
и полупроводником. Процессы в таких переходах зависят от так называемой работы выхода электронов, т.е. от той энергии, которую должен затратить электрон, чтобы выйти из металла или полупроводника. Чем меньше работа выхода, тем больше электронов может выйти из данного тела. Рассмотрим процессы в различных метал-лополупроводниковых переходах (рис. 2.5).

Если в контакте металла с полупроводником n-типа (рис. 2.5, а) работа выхода электронов из металла Ам меньше, чем работа выхода из полупроводника Ап, то будет преобладать выход электронов из металла в полупроводник. Поэтому в слое полупроводника около границы накапливаются основные носители (электроны), и этот слой становится обогащенным, т. е. в нем увеличивается концентрация электронов.

Сопротивление этого слоя будет малым при любой полярности приложенного напряжения, и, следовательно, такой переход не обладает выпрямляющими свойствами. Его называют невыпрямляющим (омическим) контактом.

Подобный же невыпрямляющий переход получается в контакте металла с полупроводником р-типа (рис. 2.5,6), если работа выхода электронов из полупроводника меньше, чем из металла (Ап < Ам). В этом случае из полупроводника в металл уходит больше электронов, чем в обратном направлении, и в приграничном слое полупроводника также образуется область, обогащенная основными носителями (дырками), имеющая малое сопротивление. Оба типа невыпрямляющих контактов широко используются в полупроводниковых приборах при устройстве выводов от п- и р-областей. Для этой цели подбираются соответствующие металлы.

Иные свойства имеет переход, показанный на рис. 2.5, в. Если в контакте металла с полупроводником n-типа Ап < Ам> то электроны будут переходить главным образом из полупроводника в металл и в приграничном слое полупроводника образуется область, обедненная основными носителями и поэтому имеющая большое сопротивление. Здесь создается сравнительно высокий потенциальный барьер, высота которого будет существенно изменяться в зависимости от полярности приложенного напряжения. Такой переход обладает выпрямляющими свойствами. Подобные переходы в свое время исследовал немецкий ученый В. Шотки, и поэтому потенциальный барьер, возникающий в данном случае, называют барьером Шотки, а диоды с этим барьером — диодами Шотки. В диодах Шотки (в металле, куда приходят электроны из полупроводника) отсутствуют процессы накопления и рассасывания зарядов неосновных но­сителей, характерные для электронно-дырочных переходов. Поэтому диоды Шотки обладают значительно более высоким быстродействием, нежели обычные диоды, так как накопление и рассасывание зарядов - процессы инерционные, т. е. требуют времени.

Аналогичные выпрямляющие свойства имеет контакт металла с полупроводником типа р при Ам < Ап.

Лекция 3 Формула свертки. Импульсная характеристика

Вопросы лекции:

  1. Сущность линейной дискретной обработки.
  2. Импульсная характеристика.
  3. Устойчивость дискретных систем.

В принципе «дискретная система» и «дискретный фильтр» — это одно и то же, однако понятие «фильтр», сознательно или подсознательно, довольно тесно связывается с системами, которые одни частоты пропускают, а другие задерживают. Такой подход может создать ложное, ограниченное представление о назначении и возможностях дискретных линейных систем, которые способны выполнять и иные задачи, нежели выделение из сигнала определенной полосы частот. По этой причине в названии данной лекции использован термин «дискретные системы». Однако в тексте слова «фильтр» и «система» будут использоваться как синонимы.



edu 2018 год. Все права принадлежат их авторам! Главная