Учебные материалы


4.4.1. Бессрочный аннуитет - Тесты для проверки усвоения пройденного материала 43 Сущность потока платежей и основные категории 44



Карта сайта nataliedawnthompson.ca

4.4.1. Бессрочный аннуитет

Если денежные поступления осуществляются достаточно длительное время и их число заранее не может быть известно, то такой поток называется бессрочным аннуитетом или вечной рентой. В этом случае определение будущей величины такого аннуитета не имеет смысла. Для данного вида финансовой ренты имеет смысл только характеристика современной величины потока платежей. Поток, даже с неограниченным числом платежей все же имеет конечную приведенную стоимость, поскольку с финансовой точки зрения, деньги, поступающие через много лет, сейчас практически ничего не стоят. Для бессрочного аннуитета постнумерандо формула современной величины принимает следующий вид: При больших сроках аннуитета и большом уровне процентной ставки для определения приведенной величины срочного аннуитета можно пользоваться формулой бессрочного аннуитета, поскольку полученный приблизительный результат не слишком будет отличаться от точного значения, т.к. при сроке более 40-50 лет коэффициенты дисконтирования аннуитета незначительно отличаются друг от друга. Приведенная стоимость бессрочного аннуитета пренумерандо в общем виде определяется из приведенной стоимости бессрочного аннуитета постнумерандо, скорректированного на коэффициент (1 + i), т.е. отличается на величину первого платежа.

4.4.2. Непрерывный аннуитет

Если промежутки между последовательными поступлениями являются бесконечно малой величиной, то такой аннуитет считают непрерывным, т.е. денежные поступления происходят непрерывно с постоянной интенсивностью. При начислении непрерывных процентов для получения формул определения наращенной или современной величины потока платежей необходимо перейти к пределу, откуда:
  • наращенная величина потока платежей где σ – сила роста.
  • современная величина потока платежей

    4.5. Нерегулярные потоки платежей

    В финансовых операциях возможны ситуации, когда величина платежа либо увеличивается, либо уменьшается с течением времени, например, под влиянием инфляции. В таких случаях говорят о нерегулярных потоках платежей. Нерегулярные потоки платежей характеризуются присутствием хотя бы одного нерегулярного параметра: период ренты или размер платежа. Для получения их обобщающих характеристик требуется прямой счет, т.е. вычисление соответствующих характеристик по каждому платежу и последующему их суммированию. Однако в ряде случаев можно применять следующую формулу: Пример. По приведенным данным о денежных потоках рассчитать для каждого наращенную величину, если потоки имеют место в конце года. Процентная ставка 12% годовых. Поток 1 2 3 4 5 А 100 200 200 300 300 В 200 - 200 - 200 Решение: Для решения данной задачи произведем прямой расчет наращенной суммы по каждому периоду, представив данные в виде таблиц.

    Наращение суммы для потока А

    : k Платеж Проценты Наращенная сумма 1 100 - 100,00 2 200 12,00 312,00 3 200 37,44 549,44 4 300 65,93 915,37 5 300 109,84 1325,21 Итого 1100 225,21 x Таким образом, наращенная сумма потока А через пять лет составит 1'325,21 рублей.

    Наращение суммы для потока В

    k Платеж Проценты Наращенная сумма 1 200 - 200,00 2 - 24,00 224,00 3 200 26,88 450,88 4 - 54,11 504,99 5 200 60,60 765,59 Итого 600 165,59 x Для потока В наращенная сумма через пять лет составит 765,59 рублей. Если воспользуемся вышеприведенной формулой, то
  • для потока А наращенная величина составит: FVA = 100 • (1 + 0,12)4 + 200 • (1 + 0,12)3 + 200 • (1 + 0,12)2 + + 200 • (1 + 0,12)1 + 300 = 1'325,22 руб.
  • для потока В наращенная величина составит: FVA = 200 • (1 + 0,12)4 + 200 • (1 + 0,12)2 + 200 = 765,58 руб. Таким образом, расчет по формуле для нерегулярных потоков платежей дает такой же результат, как и прямой счет. 1 ... 11 12 13 14 15 16 17 18 ... 29


  • edu 2018 год. Все права принадлежат их авторам! Главная